If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-840=0
a = 1; b = 4; c = -840;
Δ = b2-4ac
Δ = 42-4·1·(-840)
Δ = 3376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3376}=\sqrt{16*211}=\sqrt{16}*\sqrt{211}=4\sqrt{211}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{211}}{2*1}=\frac{-4-4\sqrt{211}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{211}}{2*1}=\frac{-4+4\sqrt{211}}{2} $
| .8x=500 | | 0.7=y/14.7 | | 4x2-13x+8=-2x+2 | | 2(x+3-3x-(-1x+6)=0 | | 2(x+3-3x=5-x+1 | | 6x2+5x-1=0 | | 0.1=0.05+x(0.05) | | 60=16x+2x | | -16x^2-10x+30=0 | | 60=3(2x)+2x | | u+8/2=5-2u-4/5 | | 3x+3x+x-23+44+45=360 | | 4x^=9 | | 3(4x+1)=15x-3 | | .5x-3x=7(x+5) | | 4x2-225=0 | | 3f^2-19f+16=0 | | 4x2-255=0 | | x2-11x+10=-6x+4 | | x2+8x+23=8 | | b9=-108 | | I+8/2=5-2u-4/5 | | (12-3i)(7+3i)=0 | | 3x^+5=38 | | b9=-208 | | a^2+24=26 | | 16+x/3=-12 | | x2+2x-12=4x-4 | | 12x+5=1/12x | | X(6+x)=374 | | (2x-4)(x=2) | | x2+x+7=9 |